EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-682663

ROPE: Recoverable
Order-Preserving Embedding of
Natural Language

D. Widemann, E. X. Wang, J. Thiagarajan

February 11, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

ROPE: Recoverable Order-Preserving Embedding of Natural

Language
Eric X. Wang David P. Widemann
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory
wang73@1llnl.gov widemann@llnl.gov

Jayaraman J. Thiagarajan
Lawrence Livermore National Laboratory
jayaramanthil@llnl.gov

Abstract

We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE
maps natural language passages from sparse concatenated one-hot representations to distributed
vector representations of predetermined fixed length. We use Euclidean distance to return search
results that are both grammatically and semantically similar. ROPE is based on a series of random
projections of distributed word embeddings. We show that our technique typically forms a dictionary
with sufficient incoherence such that sparse recovery of the original text is possible. We then show
how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s
COCO dataset and the IMDB Movie Review dataset.

1 Introduction

Distributed text representations have received significant attention lately [1, 2]. Representations such as word2vec [1]
and GLoVE [2] encode words in high dimensional vector spaces where relative spatial proximity and geometry encode
significant syntactic and semantic information. These embeddings in turn enable powerful order-sensitive natural
language processing (NLP) algorithms, and have been applied with success in fields such as sentiment analysis [3],
sentence completion [4] and language and caption synthesis [5, 6].

Much recent NLP research using distributed word representations ingests a series of word vectors directly [7, 8, 9].
This typically requires setting the number of words seen by the model a priori, a choice that can have important
effects on the behavior of the model. We propose an alternative approach to language understanding and sentence-
level feature extraction that relies on tools and concepts developed for compressive sensing (CS) and sparse recovery.
Our approach, which we call ROPE for Recoverable Order-Preserving Embedding, has several advantages

1. Sentences of arbitrary lengths (up to a preset-maximum) are encoded into a fixed feature size.

2. The Euclidean metric in the distributed representation space preserves semantic meaning. Sentences that
have similar meaning and structure are close to each other in the Lo-norm. This makes it possible to search
for similar semantic meaning across variable length sentences.

3. Given a set of learned word vectors Encoding sentences via ROPE is highly efficient, requires no parameters
to learn, and can be parallelized readily.

4. Text can be recovered/synthesized from the embeddings via well known sparse recovery techniques by taking
a dense vector in R” to a high dimensional sparse vector denoting non-zero dictionary entries.

5. Embedding text via ROPE has extremely low computation overhead, allowing for on-the-fly creation of
passage-length feature vectors.

The primary application of ROPE is as a semantically meaningful feature extraction tool for text. This potentially
allows variable-length text passages embedded with their word-ordering by ROPE to be ingested by a wide variety of

model architectures that were previously unavailable to NLP researchers such as convolutional neural networks, linear
and kernel based classifiers, and clustering algorithms.

An outline for this paper is as follows. First we describe the compressive sensing (CS) and demonstrate how CS can be
employed for sparse recovery of text. We next show that distributed embeddings, specifically the vectors learned by the
popular word2vec, also yield meaningful and recoverable basis. These results are extended to give Recoverable Order
Preserving Embeddings (ROPE). Results for ROPE are shown that demonstrate its efficacy for document retrieval
using the Microsoft COCO dataset [10]. We conclude by discussing challenges and future work.

2 A Brief Review of Compressive Sensing

Compressive sensing concerns the recovery of a sparse vector given a real valued observation vector and an appropri-
ately designed sensing matrix. Consider a real valued signal X € R”. Any signal in DV can be represented by a basis
U consisting of R” vectors. The signal X is K -sparse is it can be represented by a subset of K columns of U. Let
S € RV denote the weighting coefficients such that
X =vuTgs, (1
where S has K non-zero elements. Further, let ® € RP*? denote a fixed measurement matrix. Then the compressive
measurement Y € R is
Y =0X =075 =05 ()
where © = ®U7 is an R x V matrix. The basis ¥ need not be orthogonal, and in fact can be highly overcomplete
[11], a fact we will exploit in this work. We construct the sensing matrix ® by sampling its elements from N (0,1/R);
with overwhelming probability this construction insures that the matrix © satisfies the restricted isometry property
(RIP),
(1=06x)[Sll2 < [|0S]]2 < (1 = 6x)][S]|2 3)
for 6 € (0,1) [12, 11]. Given Y and an RIP-satisfying ©, the sparse vector S can be recovered exactly [12],
typically with either an L1 regularized recovery or a greedy matching pursuit type algorithm. More recent work has
shown Bayesian methods also work well.

3 Sparse Recovery of Unordered Text

We begin by discussing a simple example of unordered text recovery. Consider a large vocabulary of V' words, and let
S be a K -sparse V-dimensional vector of word frequencies. If S encodes a short passage (for example a sentence) then
S will naturally be sparse. By observing the compressed measurement Y = ®.5 and the RIP-satisfying measurement
matrix ®, we can perform CS inversion [13] to recover S with low error without knowing the value or position of the
non-zero elements a priori. Any CS inversion algorithm can be used to recover the original signal. We choose to use
the Variational Bayes Relevance Vector Machine (VB-RVM) as detailed in [14] for all inversions demonstrated in this

paper.
In Figure 1 we show the process of recovering the phrase “closeup of bins of food that include broccoli and bread”. The
elements of the RIP-satisfying matrix (shown in Figure 1(b)) are sampled i.i.d. from a zero-mean Gaussian distribution.
As these are demonstrations, for computational speed we culled 90% of the dictionary, resulting in approximately
V' = 850 unique tokens (and their corresponding vectors) being considered in the projection and recovery. Following
[15], we set N = 100 > Klog(V') with K = 10 resulting in a 100-dimensional measurement (Figure 1(a)).

That the original sparse signal (encoding text or otherwise) can be recovered with high fidelity via a RIP-satisfying
random projection is well known. However, suppose we train a set of D dimensional distributed word representation
on a corpus containing V" unique words. Let B be a D x V' dimensional matrix whose columns are the individual word
vectors. A surprising result is that if we simply use the B as the sensing matrix instead of the RIP-satisfying matrix
A, we can still recover S with no apparent degradation in performance. We show this in Figure 2 with D = N = 100.
Here the only difference to the preceding case is that a semantic text embedding is trained beforehand to learn the
structure shown in Figure 2(b). Note that significantly more structure is present in the semantic projections of 2(b)
than in the random matrix of 1(b).

An advantage of of using the distributed word vectors over the RIP satisfying embedding is that semantic information
is included in the sentence embedding via the distributed representation, thus the sentences “a dog ran across a park”
and “a puppy ran across a park” will be proximate to one another due to the semantic closeness of “puppy” and “dog”.
We believe that the ability to recover the sparse signal from the highly structured semantic embeddings is due to the
fact that, while B does not necessarily satisfy RIP, its columns exhibit sufficient incoherence such that they satisfy the
relaxed recovery conditions of [16].

Unordered Measuremen Semantic Vectors Sparse Recovery Result Iteration ! Sparse Recovery Result Iteration 10

4
~

i 3&
2 - s 2
5 & 3 5 <

5 5 H H N s

g E Eisl o > S

g 8 o = B 5 (3 ég’é,@b

3 g H H & &5 T

2 S 2

2 2 T g ! i

= K] 2 S
z 8 8
] 2 3 s
£ .- & 05
@ 1

o b B s i o
0 20 40 60 80 100 200 400 600 800 0 200 400 600 800
Measurement Inde> Word Word
(a) (b) (d)

Figure 1: Sparse recovery of unordered text via a RIP satisfying embedding. (a) Observed measurement. (b) RIP
satisfying matrix. (c) and (d) show VB-RVM recovery at 10 and 100 iterations, respectively.

Unordered Measuremen Semantic Vectors Sparse Recovery Result Iteration 1: Sparse Recovery Result Iteration 10

25 @
15 &

OZL T{ whm UL‘% W%ﬁv i if
_Osoli {}&ufq mx 1

A5
%

n

o

Measurement

Recovered Word Coun
Recovered Word Coun

Semantic Space Dimensior

o
@

i

20 40 60 80 100 200 400 600 800
Measurement Inde> Word

(a) (b)

Figure 2: Sparse recovery of unordered text via word2vec vectors. (a) Observed measurement. (b) The word2vec
vectors (columns). (c) and (d) show VB-RVM recovery at 10 and 100 iterations, respectively.

4 Recoverable Order-Preserving Embedding (ROPE)

Based on the previous section, ordered recovery of text requires only minor changes to our embedding algorithm. In
this section, we will redefine the sparse representation .S and the measurement matrix A.

Instead of a word frequency vector encoding all the words in a string, suppose we encode each word by a one-hot
V-dimensional vector. We will consider up to K consecutive words. These one-hot vectors are concatenated in the
order the words appear into an M -dimensional K -sparse vector, where M = KV. K is chosen to be the maximum
length text passage we expect to encounter. Typical sentences will be shorter, and thus have sparsity less than K.

To construct the projection matrix © € R¥N*XV we first construct the sparse basis ¥ by loading word embeddings
B onto its main diagonal with zeros elsewhere. Thus, U is a kD x kV block diagonal matrix. The RIP-satisfying
sensing matrix ® has dimensionality R x kD and has elements sampled from N (0,1/R)

This construction allows for the usage of a word at different word positions to be identified. Each copy of the word
embeddings are completely incoherent with the other copies due to the block diagonal structure. Within each copy of
the word embeddings, there is significant redundancy, as the typical number of words V is significantly larger than the
word embedding dimensionality D. Happily, the properties of RIP-satisfying matrices extends to this exact situation
[11], and the general geometry of the semantic space, encoding the rich relationships among concepts is preserved.

Below in Figure 3 we show an example of ordered recovery. We set N = 500, D = 100, and consider an embedding
of up to 15 words, resulting in a sensing matrix consisting of 15 randomly projected copies of the word2vec vectors
with M = 15V.

The projection matrix © is shown in Figure 3(b). We show the recovered sentence in Figure 3(c) where again the
vertical lines denote the repeated dictionaries. Note that within each dictionary, only one word has a non-zero value.

5 Results

5.1 Caption Retrieval via ROPE

Recently, Microsoft released the Common Objects in COntext dataset (COCO) [10] dataset, comprising over 300, 000
images. Each image is partially segmented, with labels for the segments. 80 unique labels are considered. Additionally,

Projected Semantic Vectors (Ordered)
Ordered Measurement H H H Hi H T H) H H H H H 5

Measurement
Project Semantic Dimension

$ Ty g ' ‘. ' i G s
0 100 200 300 400 500 2000 4000 6000 8000 10000 12000
Measurement Index Word

(a) (b)

Sparse Recovery

lq | s
S i | Y & Ly i i i i
= ol Sy Ly & e F L
E §s £ & & <>*° r§: <§” o
S b ! | b o
s - o
E . o
z - o
8 - o
o i i i ' ' '
g 05 - .
o
g - o
L - o
o 2000 4000 6000 8000 10000 12000
ord
(©

Figure 3: Sparse recovery of ordered text via word2vec vectors. (a) Observed measurement. (b) Measurement matrix
constructed by randomly projecting copies (denoted by vertical lines) of the word2vec vectors via RIP satisfying
matrices. (c) The recovered sentence.

each image is associated with 5 full English captions. For our experiments, we used the 80,000 image training set
from the COCO 2014 release and the 40, 000 image validation set as our out-of-set testing dataset.

We demonstrate two different caption retrieval methods via ROPE on the MS COCO dataset. In the first demonstra-
tion, we show results using previously unseen out-of-set examples from the validation set as queries. In the second
demonstration, we show qualitative results using previously unseen user generated (arbitrary) text as queries. In both
cases, results are ranked by L, distance in the embedded space. Note that we show the images associated with the
retrieved captions for illustrative purposes only, and image feature vectors are not considered in our search results. For
the COCO examples, we used embeddings capable of considering up to 50 word long passages in order to cover the
longest caption in the COCO training set.

5.2 Querying with user-generated out-of-set captions

Given a query of length K, the distributed representations B, and the random projection matrices Ry, ROPE maps the
query into its embedding space as

K
unery = Z RKBC]C 4
k=1

where ¢ denotes the dictionary position of the kth word in the query and B, is the cth column of B.

Below in Figure 4 we show several examples of searches using user-created queries. For each query, we show the
5 closest captions and their associated images. These results demonstrate that while ROPE is not a language model,
the ordered-preserving embedding space it generates is quite rich in an NLP sense. For example, in Figure 4(a) the
query includes a passage “runs across a park” that does not appear as a previously observed phrase in the training set;
however, the embeddings are still able to strongly capture the concept of a dog catching a frisbee. In Figure 4(b), the
query “a man hits a baseball” does not return any matches with the word “hit”; instead the search returns results with
“swinging a bat”. In Figure 4(c) the embedding is able to discern a the word “some”denotes a plurality, and responds
with pictures of mutliple zebras. The error made (by the inclusion of giraffes) in 4(c) can be explained by the semantic
similarity of giraffes and zebras in the semantic space.

Notably, the results and queries all differ in length, and many differ in linguistic structure. This shows that, given
sufficient data to create the embedding space, ROPE captures significant semantic and syntactic information. While

100 200 300 400 500 200 400

Query: a dog runs across a park to catch a frisbee Query: a man hits a baseball Query: some zebras standing in a field

Answer 1: A dog leaps in the air to catch a frisbee Answer 1: A man swinging a bat towards a baseball. Answer 1: Three zebras standing in a field of grass.
Answer 2: A dog leaps in the air to catch a Frisbee. Answer 2: A man swinging a bat towards a baseball. Answer 2: Several zebras grazing in a lush green meadowland.
Answer 3: A dog jumps in the air to catch a frisbee. Answer 3: A boy swings a bat at a pinata. Answer 3: Two zebras standing in a fenced zoo enclosure.
Answer 4: a dog jumping in the air to catch a frisbee Answer 4: A man swinging a bat at a baseball. Answer 4: Two giraffes standing in a grassy enclosure.
Answer 5: A dog jumping in the air to catch a Frisbee. Answer 5: A man pitches a ball to the a batter Answer 5: Two zebras running in a field past brush
Answer 6: a dog jumps in the air to catch a frisbee Answer 6: A man swinging a bat towards a ball. Answer 6: two zebras standing in a grassy field grazing

(a) (b) (c)

Figure 4: Sample user generated query results.

ROPE does not allow a machine to understand a sentence per se, it does create a vector space where abstract concepts
(encoded in structured passages of words) can be compared to one another in an intuitive and straightforward manner.

5.3 Querying with validation out-of-set captions

We use the captions and labels from Microsoft COCO 2014 validation dataset as a test set. The test set contains
200, 819 captions, each with several labels corresponding to segments in its associated image. For this experiment, we
treated the segment labels as ground truth.

For each test caption, we retrieved the 50 closest matches in the embedded space, and computed the Top-N, N = 50,
precision and recall scores for two different matching criteria: Single Match - a “success’ if the returned result shares
at least 1 label with the query labels; and Half Match - a “success” if the returned result matches at least half of the
query image’s labels. In the case of an odd-numbered query labels, we use the next largest integer. For queries with
single labels, the match is all-or-nothing. Below in Figure 5 we show the mean Top-V precision scores for ROPE as
well as the random baseline.

As expected, the Single Match criteria results in improved precision but significantly reduced recall compared to the
more strict Half Match criteria. The random baseline recorded precision scores near 0.1%.

6 Results on IMDB Movie Review Dataset

The IMDB Movie Review dataset is a collection of 25,000 movie reviews, of which 12,500 are positive and 12,500
are negative [17]. Each review is partitioned by its sentences and then each sentence is embedded via ROPE. There are
approximately 600k sentences in total and the sentence variance in structure and length is much greater than that of the
Microsoft COCO 2014 dataset. A sentence is chosen at random and a query is performed to find its closest neighbors.
The performance of ROPE for semantic search and retrieval on the IMDB dataset is mixed. There are examples of
ROPE successfully returning semantically meaningful results.

Mean Top-N Precision

0.4 . . :
—=—ROPE 500 Dimensions [Single]
——ROPE 100 Dimensions [Single]
0.35¢ -4-ROPE 500 Dimensions [Half]
-+-ROPE 100 Dimensions [Half]
0.3k Random
0.251
c
o
3 0.2
o
& - Adaan,,
0.15r%=¢ Ahadna,
e - .f“Am“%AAAAAAAAAmmA;AMA
01l Al Lo S L B PPN
0.05}
0
0 10 20 30 40 50

Figure 5: Experiemental Results using Microsoft COCO 2014 Validation set as queries for ROPE embeddings of 100
and 500 dimensions.

Query: “This is one of the most beautiful and refreshing films that I have seen in some time.”
The top-4 returned sentences are:

1. This is one of the most important and powerful films I have seen in quite some time.
2. This is one of the most brilliant movies that I have seen in recent times.
3. This is one of the most life-affirming films that I have ever seen.

4. It is one of the most beautiful documentaries that I have ever seen and one of the most spiritual.
Query: “She and Dalton have wonderful chemistry and their scenes together are pure delight.”
The top-4 returned sentences are:

1. She and Matthau have great, unforced chemistry in their scenes together.

2. Cagney and Blondell have excellent chemistry and their scenes go off really well.

3. T'love seeing Harlow and Gable together and in this film they are simply wonderful.

4. Channing and Amanda have amazing chemistry and were absolutely wonderful together.
The are synonyms in the returned results that would be missed if with a standard key-word search. There are examples
of ROPE failing to return meaningful results too.

Query: “And his mother...how the hell does she figure something like that out?”
The top-3 returned sentences are:

1. But Fontaine is one of those gals who has eyes only for money, and the man standing between her and it is
transparent, so that she doesn’t even notice or care what he looks like, she looks through him and sees what
she really wants and goes for it.

2. Even that death was stupid because the statues tooth went through his mouth and hangs there like that will
support it and there is a scene when a goth girl loses her contacts doesn’t find them, and seems like she doesn’t
need the.

3. And if you still can’t figure out which one he is, here’s a hint: The auteur and his character have the same
middle name.

The sentences in the above example are long and complex. While it is clear how their sentence embeddings are formed,
it is not clear why these sentences would be semantically close to our query. We have numerous examples of ROPE
exhibiting this sort of behavior on long, complex sentences.

7 Computational Aspects of ROPE

The computational steps for performing searching and retrieval with ROPE are as follows:

. A word embedding is created for the corpus using word2vec or GLoVe.

. The corpus is tokenized by at the sentence level.

. Each sentence is embedded using the above word embedding.

. The search query is embedded using the same projections matrices as were used for the sentences above.

. The Euclidean distance is computed between between the embedded query and all of the embedded sentences.

AN L AW N =

. The k-closest sentences are returned.

The most time consuming component above is step 3, embedding the sentences. Computationally, this is a trivial task
in which a sequence of vectors are added; however, the large number of sentences in the corpus translate into long
run-times. For example, embedding the 600k IMDB movie review sentences on a single node of our Surface cluster
required approximately 5 hours. Once the embedding is done, then it can be saved and queried against repeatedly. In
this sense, the sentence embedding step of ROPE is analogous to the indexing step for key-word search algorithms.
In order to do key-word search on a corpus, the corpus must first go through the time consuming process of being
indexed. Second, the sentence embedding step of ROPE is parallelizable. The embedding for each sentence can
be independently. Preliminary tests with parallel codes have shown that the embedding step scales linearly with the
number of processors.

8 ROPE vs Key-word Search

The main competitor for search and retrieval with ROPE is key-word search. In key-word search, a look-up is per-
formed for each word in the query using the index for the corpus. This look-up returns a set of documents that use
the query word. A set is created for each word in the query. If an and search is performed, e.g. dog + bone, then
the intersection of these returned document sets is computed and each document therein is scored. For example, the
documents that contain the word “dog” are in one set and the documents that contain the word “bone” are in another.
These two sets are then intersected. If an or search is performed then the union of these two is taken.

The benefits of key-word search are:

e Numerous tools for indexing and querying datasets

e Returned results are easily interpreted and very well understood
The cons of key-word search are:

e It does not use word embeddings so there is no notion of words being semantically close. A search for dog
will not return results that contain the word puppy in-lieu of dog. This rules out synonym searches too. This
in contrast to ROPE.

e There is no structure for the query. With key-word search, the order and the relationship between the query
words is irrelevant. In contrast, ROPE specifically embeds sentences in a manner that captures word position
information.

Overall, ROPE and key-word search can be seen as complimentary algorithms. There are cases in which key-word
search will fail but ROPE will succeed because it uses a word embedding that captures semantic meaning. Similarly,
there are examples of long sentences in which ROPE returns poor results that are hard to interpret yet key-word search
gives good results that are understood. The complimentary nature of ROPE and key-word search gives reason for
using both techniques in tandem.

9 Metrics

There is a large question and answer dataset that is used to test how well a word embedding performs on analogies.
For example, a word embedding’s performance on semantic analogies can be tested by asking questions like “man is
to king as woman is to what?.” Similarly, syntactic questions can be a tested by asking questions such as, big is to
bigger as tall is to what?.” In our experience, the GloVe algorithm tends to perform better than word2vec on semantic
analogies whereas word2vec tends to perform better on syntactic analogies. Both of these embedding techniques have
problems with homonyms. When a word has two different meanings it will still get mapped to a single word vector.
We are investigating a technique for modifying GloVe to handle homonyms.

For sentence level embeddings, there is no standard metric for measuring their performance. The Bleu score is used
for comparing sentences from automated machine translation. For example, a machine will translate a sentence from
Russian to English. The translated sentence will then be compared against a set of human translated sentences by
essentially counting the number of words that the automated translation has in common with the human generated
set. The Bleu score is slightly more complex than this, but that is the basic idea. We could do something similar for
ROPE. However, the formula for the Bleu score does not take into account synonyms. Synonyms are one the major
advantages of ROPE. In ROPE space, the sentences “The puppy ran.” and “The dog trotted.” are fairly close, yet the
Bleu score for these two sentences would be zero if we were to remove stop words. We are searching for datasets
that have sentences grouped or labeled by semantic meaning. The language translation datasets with multiple outputs
sentences may be a good candidate for testing ROPE’s performance in this regard.

10 ROPE Challenges

There are problems with ROPE that involve extraneous words, sentence length and negation. For extraneous words,
ROPE uses projection matrices to map each word in the sentence. This allows for encoding the position of each word
along with its word vector and enables order-preserving sentence recovery. However, the downside of this is that
often these“filler” words push other sentence words into different projected spaces than they would otherwise be. This
causes the sentence embedding to be very different than what it would be without filler words. One solution to this,
is to remove the projection matrices from the ROPE algorithm. The cost of doing this is that ROPE will no longer be
order-preserving. However, ROPE will be more robust against extraneous words.

We have also found that ROPE performs poorly on long sentences and does not handle negation well. Often, long
sentences will discuss multiple concepts. The ROPE embedding is mapping these multiple concepts into one vector.
It may not be possible to capture multiple concepts with single vector. There is research in which sentences are first
converted to tree structures such as constituent trees and then processing is done on the sentence and its constituent tree
[18]. The constituency tree structure allows for complex sentences to be broken down into more manageable pieces
and negation can be modeled in the tree structure. Figure 6 below, gives a the constituency tree for this long sentence
containing negation, “They were not actively developing nuclear weapons, but they contemplated it.”

b=} PUMCT
s =T s
o NN
FRIOM WR PURNCT <0 PRON VR
T, -
| \ . N
They W L= . but they W PROM
| T T | |
ware WP [P wntemplated it
‘_______.--’;}’ﬁ“'x.x_ /,/‘\\\\
HEG AD] W AR I+
not actively deweloping nuclear weapons

Figure 6: Constituency tree for a moderately complex sentence with negation.

11 Future Work

Above, we discussed applications of word embeddings for search and retrieval. However, word embeddings coupled
with recurrent neural networks and memory networks [19] are providing state-of-the-art results in a wide range of NLP
tasks. Currently, our research program is incorporating these algorithms for sentiment analysis, machine translation,
search and retrieval. I will briefly outline our approach for each task.

For sentiment analysis, we are ingesting large datasets of labeled data for training purposes. This includes the IMDB
Movie Review and the Stanford Treebank datasets. We are constructing recurrent neural networks that use LSTM
and GRU modules for recurrency and an embedding layer to learn word vectors. The embedding layer for neural
networks has been an interesting development for word embeddings. Instead of mapping words to some a priori word
embedding, the embedding can be learned for the task at hand. This works by back-propagating the error to the word
vectors themselves and making updates there.

An unrolled, two-recurrent, LSTM network as described above can be visualized in Figure 7. A passage of text is
tokenized at the word level and then the sequence of words are input into the network. The network has memory states
(hidden) that change based on the input sequences words. This allows for the network to learn complex rules and
behaviors. In the case of sentiment analysis, the final output is a single number, represented by 1 box. Networks such
as this coupled with parse trees are giving state-of-the-art results for sentiment analysis.

SR

Review Score

~ -

‘ Embedding
Layer |

Figure 7: Recurrent network for sentiment analysis

With respect to machine translation, we using recurrent neural networks with sequential output. Figure 8 gives the
architecture of a two-layer, recurrent network that can translate sentences from one language to another. A sentence is
mapped to a sequence of words and then passed through the network. The network outputs a sequence of words in the
second language. The state-of-art machine translation algorithms at Google and Microsoft use architectures similar to
this; however, the also have extra heuristics to boost results. We will have a demo of this by the end of 2016.

With the advent of memory networks, question and answer systems have acquired new capabilities. These networks
can ingest stories and answer questions that require transitive reasoning. Each sentence in the story becomes a memory
or fact. The network learns to chain relevant memories to answer the question. The input sentences can take story
form, in which time plays a role, e.g. “John went to the kitchen. John picked up an apple. John walk to the bedroom.
Where is the apple?”, or not. Researchers are investigating memory networks to enable searches that return the answer

(A e N s N s N
(S J A J - J - /
' ™) e ™ s N e ™ e T ™ s T ™ e T ™
—> —> —> —> —> —>
. J |\ J (. J (S J (S v - / - /
g ™) ™ ™ e B
\S J - J/

. J . J
Embedding |

%J

Figure 8: Recurrent network for machine translation

instead of a list of links. We are investigating using memory networks in combination with key-word search. A user
will ask a question. The question will be parsed and a key-word search will be performed. The returned documents
can be ingested into a memory network and reasoning can begin.

10

References

[1] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words and phrases
and their compositionality. In Proceedings of NIPS, 2013.

[2] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532—1543,
Doha, Qatar, October 2014. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/D14-1162.

[3] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1631-1642, Stroudsburg, PA, October 2013. Association for Computational
Linguistics.

[4] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation.
In C.j.c. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 2265-2273,2013. URL http://media.nips.cc/nipsbooks/
nipspapers/paper_files/nips26/1097.pdf.

[5] A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013. URL http:
//arxiv.org/abs/1308.0850.

[6] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. CoRR,
abs/1412.2306, 2014. URL http://arxiv.org/abs/1412.2306.

[7] Investigation of Recurrent-Neural-Network Architectures and Learning Methods for Spoken Language Under-
standing, August 2013. URL http://research.microsoft.com/apps/pubs/default.aspx?
id=193771.

[8] C. Raymond and G. Riccardi. Generative and discriminative algorithms for spoken language understanding.
In INTERSPEECH, pages 1605-1608. ISCA, 2007. URL http://dblp.uni-trier.de/db/conf/
interspeech/interspeech2007.html#RaymondR0O7.

[9] K.S. Tai and R. Socherand C. D.Manning. Improved Semantic Representations From Tree-Structured Long
Short-Term Memory Networks. ArXiv e-prints, February 2015.

[10] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollér, and C. L. Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.0312.

[11] Emmanuel J. Candes, Yonina C. Eldar, Deanna Needell, and Paige Randall. Compressed sensing with coher-
ent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59 — 73, 2011. ISSN
1063-5203. doi: http://dx.doi.org/10.1016/j.acha.2010.10.002. URL http://www.sciencedirect.com/
science/article/pii/S1063520310001156.

[12] E. Candes. The restricted isometry property and its implications for compressed sensing. Comptes Rendus
Mathematique, 346(9-10):589-592, May 2008. ISSN 1631073X. doi: 10.1016/j.crma.2008.03.014. URL
http://dx.doi.org/10.1016/j.crma.2008.03.014.

[13] Emmanuel J Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. Information Theory, IEEE Transactions on, 52(2):489-509,
2006.

[14] S.Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. [EEE Trans. Signal Processing, 56(6):2346-2356,
2008.

[15] T. Strohmer. Measure what should be measured: Progress and challenges in compressive sensing. CoRR,
abs/1210.6730,2012. URL http://arxiv.org/abs/1210.6730.

[16] J. A. Tropp. Just relax: Convex programming methods for subset selection and sparse approximation. Technical
report, 2004.

[17] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pages 142—-150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.

[18] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with compositional vec-
tor grammars. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages 455-465, 2013. URL
http://aclweb.org/anthology/P/P13/P13-1045.pdf.

11

[19] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks for natural language processing.
CoRR, abs/1506.07285, 2015. URL http://arxiv.org/abs/1506.07285.

12

